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Abstract

Sound radiation from a rotating dipole source in an opened thin duct is analyzed using the thin-body boundary element

method in the frequency domain. The difficulty in describing the rotating source in the frequency domain is overcome by

introducing a fixed Kirchhoff surface around the rotating source. Acoustic pressures generated from a rotating dipole

source, a rotating point force, on the Kirchhoff surface are calculated using Lowson’s equation. Normal derivatives on the

Kirchhoff surface of acoustic pressures in the Helmholtz integral equation are derived analytically in this paper. Radiated

acoustic pressure from the Kirchhoff source and that of the rotating original source in a free field are compared. Effects of

the number of elements on the Kirchhoff surface are verified. The analytic solution for a dipole source in a duct is

compared with the one obtained by the current Kirchhoff–Helmholtz thin-body boundary element method (K–H TBEM).

Sound radiation from a ducted rotating force is calculated using K–H TBEM for selected rotating speeds. It is shown that

wave propagation is strongly dependent on the cutoff frequency of the duct. Radiated acoustic pressure can be increased or

decreased according to the relation between the cutoff frequency of the duct and the rotating frequency of the source.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

There are many rotating systems in modern machinery. These systems create undesirable noise, which is
generated by the fluctuation of the air around a rotating body. To solve this noise problem, many researchers
have investigated sound generation from rotating sources. Lowson [1] first derived an equation for sound
generation from rotating point forces in 1965. He considered a rotor to be a combination of point forces
having lift terms and drag terms. Lowson’s assumption was a good approximation of rotor noise source,
because the major noise sources of a rotor are the pressures on the rotor blade.

In many cases, rotating sources are in a duct or in a case. The effects of the duct or the case cannot usually
be included in either the Lowson equation or the Ffowcs Williams and Hawkings equation. Studies on sound
radiation from rotating sources in a duct have focused on propagation and radiation for the last several
decades. Tyler and Sofrin [2] first analyzed sound radiation of rotating sources in a duct using mode theories.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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In their work, they considered a rotating fan as circumferentially distributed acoustic sources on a disk plane.
Other researchers have studied duct propagation using finite element methods or boundary integral methods
[3–5]. The majority of their work has been related to airplane turbo fan engines, which have many rotors and
stators. These studies have enabled the analysis of sound radiation from rotating sources for realistic duct
shapes. However, they have concentrated on propagation and radiation characteristics of the ducts rather
than on the sources. They have generally considered rotating sources as a fixed source disk, on which various
frequency components, measured or given, are distributed. This has been owing to the difficulty in describing
rotating sources in the frequency domain used for the numerical method.

In recent years, a method has been developed that combines two fields, sound generation from a rotating
source and radiation. Jeon and Lee [6] calculated the sound radiation from a centrifugal impeller near a wedge.
They introduced a fixed Kirchhoff surface that enveloped the entire rotating source region, and the boundary
element method (BEM) was used with the fixed Kirchhoff surface. They developed the Kirchhoff–Helmholtz
boundary element method (K–H BEM) for a thick body to connect an impeller noise source to the BEM using
the Kirchhoff surface, and they compared the numerical and experimental results. Jeon and Lee also applied
the K–H BEM to a thin duct and obtained good results [7].

Although Jeon and Lee [7] applied successfully the Kirchhoff–Helmholtz thin body boundary element
method (K–H TBEM) to actual ducted fan systems, all processes of the method were not sufficiently verified,
particularly for the normal derivative of the acoustic pressures from the rotating sources in the Helmholtz
integral method, an important term in K–H TBEM. In this paper, normal derivatives of acoustic pressures
from rotating sources are derived analytically, and all processes of the method are verified in several examples.
The newly derived method is applied to the analysis of sound radiation from rotating sources in an opened
thin duct.

2. Procedure for numerical implementation

Analyses of sound fields generated by a rotating source in an opened thin duct cannot be obtained using the
conventional method. Therefore, the Kirchhoff–Helmholtz boundary integral equation (K–H BIE) was
introduced by Jeon and Lee [6]. There are three steps to formulate the K–H BIE. The first step is to calculate
the sound fields generated by the rotating source. The second step is to model the source using the fixed
Kirchhoff source. The final step is to analyze acoustic scattering by a thin body. Fig. 1 shows a schematic
diagram of the entire process. The sound generated from a rotating source is calculated using Lowson’s
equation. The sound obtained using Lowson’s equation is expressed as time varying pressure signals. To apply
a pressure signal p(t) to the frequency domain boundary integral equation as an input source, p(t) should be
transformed into p(o). This is the second step using the Kirchhoff source. If the fixed Kirchhoff source is
obtained from the rotating sources, it can be substituted perfectly for the original source. Acoustic scattering
by a body can be calculated by solving the boundary integral equation, because the acoustic pressures at any
STEP 1.
Generation of an acoustic
pressure from a rotating

source

STEP 2.
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Scattering by a thin

body
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Fig. 1. A schematic diagram of the three steps of the K–H BEM for a thin body.
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points out of the Kirchhoff source can be easily obtained by integrating the sources on the Kirchhoff surface.
Details of the K–H BEM are thoroughly explained by Jeon and Lee [6]. In this paper, the K–H BEM for a thin
body is refined and validated, particularly with regard to the modeling of the Kirchhoff source.

2.1. Acoustic field of rotating point forces

Several methods can be used for calculating the acoustic field of rotating sources. A dipole term is used in
this paper to represent the noise from the rotating force. Lowson’s equation for the dipole can be written as
follows [1]:

4ppðx; tÞ ¼
1

a0rð1�MrÞ
2

_F r þ
Fr

_Mr

ð1�MrÞ

� �
þ

1

r2ð1�MrÞ
2

Fr

ð1�M2Þ

ð1�MrÞ
� FiMi

� �� �
, (1)

where p is the acoustic pressure, F is the rotating force vector, a0 is the speed of sound and i is the tensor index.
The square brackets denote that the functions inside the bracket should be evaluated at the retarded time
t ¼ t� r=a0. Where t is the time of observation and r is the distance from source to observer. Fig. 2 shows a
rotating point force and some vector notations, as follows: r is the vector from a source to an observer; x is the
angular velocity vector of a rotating force and M ¼ x� y=a0; and x and y are the position vectors of an
observer and a source, respectively. Mr and Fr are defined as F r ¼ ðxi � yiÞFi=r and Mr ¼ ðxi � yiÞMi=r. The
first and second terms of right-hand side of Eq. (1) represent the sound pressure owing to the time variation of
an unsteady force and the acceleration of the source.

2.2. The Kirchhoff source and its analytic generation

2.2.1. The Kirchhoff source

In general, rotor systems and fan systems have scattering objects such as ducts or helicopter bodies. In that
case, the scattered acoustic field in the frequency domain is usually solved by the BEM. This scattering analysis
requires a stationary source to represent rotating sources as input sources conveniently; the K–H BEM was
developed to meet this requirement [6]. The key idea of the K–H BEM is the use of the Kirchhoff source
modeling of the original rotating sources. The Kirchhoff source is usually represented as a closed surface
called the Kirchhoff surface. The Kirchhoff surface is a virtual surface that encloses all rotating sources, as
shown in Fig. 3. The Kirchhoff surface contains all the information of the acoustic sources. The characteristics
of various acoustic sources are replaced by pressure and its derivative on the Kirchhoff surface. Because the
usual BEM requires a frequency domain source, time domain pressures and their derivatives on the Kirchhoff
source are transformed into frequency domain data. Pressure at an observer position P can be calculated by
x

y

Rotating point force, F

Observer point

r

M

Ω ,z

Fig. 2. A rotating point force and related variables.
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Fig. 3. A schematic diagram of rotating sources enclosed by the Kirchhoff surface.
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the surface integration on the Kirchhoff surface, as follows:

pðPÞ ¼
1

4p

Z
K

p Qð Þ
qG

qnK

P;Qð Þ �
qp

qnK

Qð ÞGðP;QÞ

� �
dK Qð Þ, (2)

where p(P) is the acoustic pressure at PeK , K is the Kirchhoff surface, Q 2 K is a source position on K, p(Q)
and qp=qnK Qð Þ are pressure and its normal derivative, respectively, on the Kirchhoff surface K. G(P,Q) and
qG=qnK P;Qð Þ are the free field Green function and its normal derivative, respectively, on the surface. While
the shape of the Kirchhoff surface can be arbitrary in general, the cylindrical Kirchhoff surface is selected for
its convenient application to the rotating sources.
2.2.2. Derivation of the analytic Kirchhoff source

Two important variables, p(Q) and qp=qnK Qð Þ, should be obtained from the original sources using Eq. (1).
Jeon and Lee [6] generated three independent Kirchhoff surfaces for obtaining these variables, as shown in
Fig. 4. One Kirchhoff surface is used for obtaining p(Q) and two other Kirchhoff surfaces are used for
obtaining qp=qnK Qð Þ numerically. While it is easy to obtain the necessary variables with this method, it takes
time to generate the three Kirchhoff sources. The source generation step on the Kirchhoff source from the
rotating sources takes nearly the entire process time for calculating the sound radiation of the rotating sources,
including scattering. Another disadvantage of using the numerical methods of Jeon and Lee to obtain
qp=qnK Qð Þ is the accuracy of the Kirchhoff surface. For sufficient accuracy when using the numerical method,
the size of DnK should be in the range where acoustic pressures vary linearly.

In this paper, qp=qnK Qð Þ is obtained analytically for more elaborate and faster generation of the Kirchhoff
surface. The tensor form of Eq. (1) can be written as follows:

p ¼
1
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½Fi�
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qyi
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. (3)

Again, the square brackets denote that the functions inside the bracket should be evaluated at the retarded
time t ¼ t� r=a0. If Eq. (3) is differentiated with an unit vector nK on the Kirchhoff surface,
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Fig. 4. Numerical calculation of p(Q) and qp=qnK ðQÞðQmid 2 Kmid;Qin 2 K in;Qout 2 KoutÞ.
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where pðx; tÞ ¼ f x; yðt� r=a0Þ
� �

, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1ðtÞÞ

2
þ ðx2 � y2ðtÞÞ

2
þ ðx3 � y3ðtÞÞ

2
q

and t ¼ t� r=a0. qr=qxj is
obtained as below:

qr

qxj

¼
r̂j

1�Mr

, (5)

where Mr ¼ ðxi � yiÞMi=r.
The final analytic form of qp=qnK is
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2.3. Acoustic scattering by a thin body with the Kirchhoff source

2.3.1. Acoustic scattering by a thin body

In this paper, to calculate the acoustic scattering by a thin body the direct thin body boundary element
method is used [8,9]. This direct method has some advantages over the indirect method or multi-domain
method in terms of calculation time and the ease of imposing boundary conditions. Fig. 5 shows a schematic
diagram of acoustic scattering by a thin body and notations of some variables. As derived in the paper of Wu



ARTICLE IN PRESS

p−

p+

n

Acoustic source

Thin body

S+

S−np

Virtual boundary Collocation point

Node point

D+

D−

[[p]] = p+ − p−

Fig. 5. A schematic diagram of acoustic scattering by a thin body.
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and Wan [8], the normal derivative Helmholtz integral equation is written as

Z
S

ðn̂p �rpGÞ � ðn̂�r½½p��Þ þ k2
ðn̂p � n̂ÞG½½p��


 �
dS ¼ 4p

qp

qnp

þ 4p
qpsource

qnp

. (8)

We use p as a variable instead of velocity potential f in Ref. [8] and p ¼ �rqf=qt. The term n̂p is a normal
vector at a collocation point on a body surface S; n is a normal vector at a node point on S; ½½p�� ¼ pþ � p�; pþ

and p� are pressures on Sþ and S�, respectively. The term k is a wavenumber, and psource is the pressure of the
incident wave reached on a surface S from the acoustic sources. Unknowns in Eq. (10) are acoustic pressure
difference across the thin body, [[p]], as shown in Fig. 5. [[p]] can be obtained using the surface boundary
condition qp=qnp and the incident wave term qpsource=qnp. Detailed formulations and solution methods
are shown by Wu and Wan for a rigid body [8] and by Ih and Lee for a body having general boundary
conditions [9].
2.3.2. K– H TBEM—application of the Kirchhoff source to the normal derivative Helmholtz integral equation for

a thin body

To obtain the scattered acoustic pressure fields owing to a thin body, the source term should be represented
as the form of normal derivatives of source pressures, as shown on the right-hand side of Eq. (10), qpsource=qnp.
Because the source term in Eq. (10) is the form of qpsource=qnp not psource, the normal derivative of pressure in
Eq. (2) is obtained as below

qpsourceðPÞ

qnp

¼
1

4p
q
qnp

Z
K

pðQÞ
qG

qnK

ðP;QÞ �
qp

qnK

Qð ÞGðP;QÞ

� �
dKðQÞ

¼
1

4p

Z
K

pðQÞ
q2G

qnpqnK

ðP;QÞ �
qp

qnK

Qð Þ
qG

qnp

ðP;QÞ

� �
dKðQÞ, ð9Þ

where p(P) is the acoustic pressure at PeK ; K is the Kirchhoff surface, Q 2 K is a source position on K, p(Q)
and qp=qnK Qð Þ are the pressure and its normal derivative, respectively, on the Kirchhoff surface K, as
explained in Section 2.2.1. G(P,Q) and qG=qnK P;Qð Þ are the free field Green function and its normal
derivative, respectively. Because p(Q) and qp=qnK Qð Þ are obtained from a known rotating source, all terms on
the right-hand side of Eq. (11) are known. Accordingly, qpsourceðPÞ=qnp is also known. If qpsource=qnp on the
right-hand side of Eq. (10) is replaced by Eq. (11), sound scattering from the Kirchhoff source owing to a thin
body can be analyzed. p(Q) and qp=qnK Qð Þ in Eq. (11) are obtained using Eqs. (3) and (8).
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q2G=qnpqnK in Eq. (11) can be expanded as below

q2G
qnpqnK
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qG

qnK

� �
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� �
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G jk þ
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r

� �
, ð10Þ

where

qG
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G
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. (11)

The final form of Eq. (12) should be written as

q2G
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qG
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� �
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; nK2 þ
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qr
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� �
,

nK ¼ nK1 î þ nK2 ĵ þ nK3k̂. ð13Þ
3. Validations of methods and numerical results

3.1. Acoustic pressures of a rotating dipole source in a free field

Fig. 6 shows nondimensionalized acoustic pressures in the time domain and their spectrums for a rotating
dipole source at a selected observer angle y ¼ 01, 301, 601, 801, 901. The diameter of the source is Ds, the
angular velocity of the source is O and the source rotates at nondimensionalized speed n� ¼ DsO=2a0 ¼

0:00294p. The observer distance r is 1.0Ds. In Fig. 6, acoustic pressures in time domain and sound pressure
level in frequency domain are shown for a rotating source having a lift force only, F ¼ F 3 in Eq. (1), f is the
frequency. The pressure, time and frequency are nondimensionalized as p� ¼ pD2

s=jF j, t� ¼ Ot=2p and
f � ¼ 2pf =O. The nondimensionalized blade passage frequencies (BPFs) of the source are f � ¼ 1; 2; 3 . . . : As y
decreases, the shape of the acoustic pressures becomes sharper. Consequently, higher harmonics appear
noticeably for lower angles in Fig. 6. In other words, the contributions of higher harmonics from the rotating
dipole source decrease for higher values of y. Fig. 7 shows directivity patterns of the nondimensionalized
acoustic pressure, p�, from the rotating source in a free field. Most of the sound radiates for y ¼ 3012601 and
no sound radiates for y ¼ 01 or 901.

3.2. Validation of the Kirchhoff source

Two major factors should be satisfied so that the Kirchhoff source can be a good model of a rotating source.
The first factor is the accuracy of the variables pK and qp=qnK on the Kirchhoff surface. The second factor is
the accuracy of the acoustic pressure and its derivative (Eqs. (2) and (11)) at an observer point, such as on the
thin body. Both factors of the Kirchhoff source are tested in this paper.
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Fig. 7. Nondimensionalized acoustic directivity patterns from a rotating dipole source in a free field at r ¼ 1:0Ds p� ¼ pD2
s= Fj j

� �
.

Fig. 6. Nondimensionalized acoustic pressures and spectrums of a rotating dipole source in a free field at r ¼ 1:0Ds (p� ¼ pD2
s= Fj j,

t� ¼ Ot=2p and f � ¼ 2pf =O).
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Fig. 8. Comparisons of numerical qp�=qnK

�� �� in the time domain with analytic qp�=qnK

�� �� at the test point on the Kirchhoff surface

qp�=qnK

�� �� ¼ qp=qnK=D3
s

�� ��� �
.

H.-L. Choi, D.J. Lee / Journal of Sound and Vibration 295 (2006) 739–752 747
3.2.1. Accuracy of the surface variable qp=qnK on the Kirchhoff surface

To check the accuracy of the numerical representation of qp=qnK on the Kirchhoff surface K, the
numerically obtained qp=qnK is compared with the present qp=qnK obtained by analytic formulation (Eq. (8))
at a selected point on the Kirchhoff surface K with a variable Dnj j. The tested dipole source represents lift force
only, F ¼ F 3 and it rotates in the xy plane with a diameter Ds. Fig. 8 shows comparisons of the numerical
nondimensionalized qp=qnK

�� ��, qp�=qnK

�� ��, in the time domain with the analytic qp�=qnK

�� ��. The normal
derivative of the pressure is nondimensionalized as qp�=qnK

�� �� ¼ qp=qnK=D3
s . It is shown that the accuracy of

the numerical results highly depends on the magnitude of Dnj j. Furthermore, as stated earlier, the numerically
obtained Kirchhoff source requires a much longer calculation time than the present analytic Kirchhoff source
and most of computing time is used for the calculation of the Kirchhoff sources.
3.2.2. Accuracy of the acoustic pressure and its normal derivative on the duct

Fig. 9 shows a comparison of the exact values of p�
�� �� and jqp�=qnpj in Eqs. (3) and (6) with values obtained

using the Kirchhoff surface at the observer points on the duct wall. The diameter of the duct is 20Ds and the
diameter of the cylindrical Kirchhoff surface is 1.2Ds. Because the accuracy of the Kirchhoff source is affected
by both the number of elements and the source frequencies, the Kirchhoff source is tested for several element
numbers and several BPFs of the source. The tested rotating speed is n� ¼ 0:0147p. The BPFs of the source are
f � ¼ 1; 2; 3 . . . : For a small number of elements, the Kirchhoff source cannot represent acoustic pressures and
their normal derivatives from the original source. As the number of elements on the source increases and the
calculated frequency decreases, the discrepancy between the two sets of data decreases. It is shown that the
Kirchhoff source can substitute for the original rotating sources very well.
3.2.3. Validation of K– H TBEM

Sound radiation from a ducted stationary dipole in a thin opened duct is analyzed by the K–H TBEM
because analytic solutions exist. Fig. 10 shows a schematic diagram of the problem, a far-field acoustic
directivity of a ducted stationary dipole, which is modeled as the Kirchhoff source. Detailed geometries of the
problem are shown in the paper of Martinez [10]. In Fig. 10, the acoustic directivities using K–H TBEM is
compared with the analytic ones [10]. The results of the proposed K–H TBEM with 64 duct elements show
good agreements with the analytic ones. Although the modeled source is a stationary dipole not a rotating
dipole, it is enough to validate the K–H TBEM because the source modeling procedure using the Kirchhoff
source is the same for the stationary source and the rotating source.
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Fig. 9. Effect of the Kirchhoff element on p�
�� �� and qp�=qnp

�� �� at P on the duct wall at n� ¼ 0:0147p (——: analytic, &: 82 Kirchhoff elem.,

- - - -: 254 Kirchhoff elem., B: 434 Kirchhoff elem., K: 1066 Kirchhoff elem., (a1): p�
�� ��—the 1st BPF, (a2): p�

�� ��—the 2nd BPF,

(b1): qp�=qn
�� ��—the 1st BPF, (b2): qp�=qn

�� ��—the 2nd BPF).

k=3.25

440dB
60dB

k=8.3

40dB
60dB

Lduct

0.75Lduct

Dipole source

�
��

Fig. 10. Effect of the duct element on the acoustic radiation of a ducted dipole (- - - -: K–H TBEM (32 duct elements), ——: K–H TBEM

(64 duct elements), J: Martinez).
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Fig. 11. A schematic diagram of a ducted rotating source and definitions of axes (Lduct ¼ 5:0Dduct, Lsource ¼ 2:5Dduct), Dduct ¼ 20Ds).
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Fig. 12. Calculating meshes on a duct and the Kirchhoff source.
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3.3. Sound radiation from a rotating source in a circular duct with the K– H TBEM

Generally, an acoustic source in a duct can be thought as the combination of infinite number of duct modes.
Some sources are composed of a few modes and some are composed of many duct modes. In these cases, some
modes can propagate through a duct and some modes cannot. These propagation phenomena are determined
by the geometry of the duct. Among these modes, a plane wave mode can always propagate without
exponential decay for rigid ducts. However, if the source does not have a plane wave mode and only have
other higher modes, it can be decayed exponentially even for a rigid duct case. Because each BPF of the
rotating dipole source considered in this paper has little plane wave mode and has a specific rotating mode,
some can be diminished in spite of a rigid duct.

Acoustic fields of a ducted rotating dipole source are analyzed with the proposed K–H TBEM. Fig. 11
shows a schematic diagram of a ducted rotating source and Fig. 12 shows numerical meshes on the Kirchhoff
source and on the circular duct. All surfaces of the infinitesimally thin duct used for calculation are rigid,
qp=qn ¼ 0 on duct surfaces. The diameter of the duct, Dduct, is 20Ds. The diameter and the height of the
cylindrical Kirchhoff surface are 1.2Ds and 0.4Ds, respectively.
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3.3.1. Cutoff frequency in the duct

Fig. 13 shows instantaneous nondimensionalized acoustic pressure contours of the rotating dipole source in a
free field and in the duct. (a1), (a2) and (a3) are the instantaneous nondimensionalized acoustic pressure contours
of the rotating source in a free field. The nondimensionalized rotating speed of the source is 0.0265p. The first BPF
of the rotating source, f �, is 1. The patterns of radiation are similar when the source is in a free field. However, if
the source rotates in a duct, the acoustic fields are completely different (see (b1), (b2) and (b3)). For the case of the
first BPF, it is cutoff (see Table 1) and acoustic waves exponentially decay through the duct (see (b1)). The
magnitude of the radiated sound for the first BPF is much smaller than that for the free field case (see (a1)). On
the other hand, acoustic waves regularly propagate and radiate for the second and third BPF cases, because they
are cuton (see Table 1). The acoustic fields of the source in a duct (see (b2) and (b3)) become more complex than
those of the source in a free field (see (a2) and (a3)) owing to diffraction at both edges of the duct.

3.3.2. Directivity patterns

Fig. 14 shows directivity patterns of the nondimensionalized acoustic pressures, p�, from the rotating source
in a free field and in the duct at r ¼ 7:5Dduct. The magnitude of (a1), (a2) and (a3) in Fig. 14 is 10 times the
Fig. 13. Instantaneous nondimensionalized acoustic pressure contours of a rotating dipole source, at n� ¼ 0:0265p ((a1): free field—the 1st

BPF, (a2): free field—the 2nd BPF, (a3): free field—the 3rd BPF, (b1): ducted field—the 1st BPF (cutoff), (b2): ducted field—the 2nd BPF

(cuton), (b3): ducted field—the 3rd BPF (cuton), n� ¼ DsO=2a0).

Table 1

Cutoff frequencies of a circular duct (Dduct ¼ 20Ds, radial mode ¼ 1) and rotating frequencies of a rotating source

BPF f � n� ¼ 0:0265pð Þ Circumferential mode, m ¼ 1

f �cutoff ¼ 1:1067
� � Circumferential mode, m ¼ 2

f �cutoff ¼ 1:8333
� � Circumferential mode, m ¼ 3

f �cutoff ¼ 2:5256
� �

1st 1 Cutoff Cutoff Cutoff

2nd 2 Cuton Cuton Cutoff

3rd 3 Cuton Cuton Cuton
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Fig. 14. Acoustic directivity patterns of a ducted rotating dipole source at r ¼ 7:5Dduct, at n� ¼ 0:0265p ((a1): free field—the 1st BPF, (a2):

free field—the 2nd BPF, (a3): free field—the 3rd BPF, (b1): ducted field—the 1st BPF (cutoff), (b2): ducted field—the 2nd BPF (cuton),

(b3): ducted field—the 3rd BPF (cuton), n� ¼ DsO=2a0).
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magnitude of (b1), (b2) and (b3). The magnitude of the harmonic frequency of the source decreases in a free
field for the higher harmonics (see (a1), (a2) and (a3)). However, the magnitude of the harmonic frequency of
the source in the duct shows different patterns (see (b1), (b2) and (b3)). It is interesting that the magnitude of
the second BPF for the duct case is larger than that of the first BPF (see (b1) and (b2)). This is because the first
BPF is cutoff and the second BPF is cuton.

4. Concluding remarks

A numerical method for calculating sound radiation from a rotating dipole source in an opened thin duct is
developed. The Kirchhoff surface is introduced as a means to model the rotating source in the frequency
domain to include the diffraction effect from the finite duct. When modeling the rotating source as the fixed
distributed sources on the Kirchhoff surface, the acoustic pressure of the rotating source and the normal
derivative of the pressure should be obtained. In this paper, the normal derivative of the acoustic pressure on
the surface has been derived analytically. It has been shown that the acoustic pressure and the normal
derivative of the acoustic pressure are well described through the Kirchhoff source on the thin duct wall. The
K–H TBEM is well established and verified.

After verification of the K–H TBEM, the method was applied in the calculation of sound radiation from a
ducted rotating dipole source. It was shown that sound radiation from the rotating source in the duct has
different directivity patterns from those of the rotating source in a free field. Lower harmonics of the rotating
source tend to be cutoff and higher harmonics tend to be cuton. Wave propagations of the rotating source are
strongly dependent on the cutoff frequency of the duct circumferential modes.
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